Timing System Development Plans

Current Workload

10 October 2010

Motivation for Change

- Not enough time for R&D
- Too much time wasted with software updates (downloading, restarting, ...)
 - Tools run on different linuxes and Windows versions
- Lots of support requests hanging around
- Delays in correspondence
- Insufficient documentation/examples which leads to more support questions
- Web pages out of date
 - > Too much work for one person!

Options to solve resource issues

- Enlarging Business locally in Finland:
 - Temporarily increase workload
 - Human resources
 - Training
 - Mentoring
 - Decrease level of freedom (currently I'm working > 60% of time from home)
 - ► Not an option
- Cooperation/Partneship with another Company

Cosylab

- Cosylab's work with MRF products:
 - PXI firmware additions to CompactPCI EVG/EVR
 - LabVIEW driver support for CompactPCI/PXI EVG/EVR (Joze's MedAustron talk later today)

Cooperation with Cosylab

- Main Goals
 - Better response to customers' needs
 - Improve level of support/documentation
 - Software support / turn-key solutions
 - Reduce risk of MRF ceasing operation
 - New/better products
- Possibilities
 - Enlarge customer base:
 - Industry could benefit from precise timing

Cooperation with Cosylab

- Responsibilities
 - MRF will:
 - Focus on R&D
 - Continue with product support
 - Cosylab will:
 - Provide timing solutions / system integration
 - Produce and sell timing system products globally

CompactRIO EVR HW

- SFP transceiver for event link
- Lattice ECP2M-35 FPGA with high speed serial link
- 10/100 ethernet
- 64 Mbytes DDR2 memory
- 2 x 16 Mbits serial flash
 - FPGA configuration
 - Software (e.g. RTEMS)
- EEPROM for
 - CompactRIO compliance
 - Store ethernet MAC address
- 5 to 35 VDC power supply input
- 71 mm x 88 mm x 23 mm
- I/O through DSUB15
- ~30 ps RMS jitter

CompactRIO EVR firmware

DSUB15 connections:

- Four programmable outputs (Univ. I/O Outputs in register map)
- Four programmable inputs (Univ. I/O Inputs in register map)
- Configuration through 115200 baud serial interface on two pins (RX & TX)

Challenges (when used with NI HW/LabView)

- Power dissipation ~3W
 - Module has to be placed in slot 1
- Achieve required timing resolution
 - cRIO backplane is running on an internal 40 MHz clock \rightarrow 25 ns jitter
- Achieve required data transfer capability (serial interface)
- Control and configuration methods
 - cRIO (serial interface)

CompactRIO EVR further development

- LANS (Doug Gilpatrick and Eric Björklund) have four units
 - Waiting for their comments/suggestions
- Universal I/O carrier board for cRIO EVR with:
 - Two Universal I/O slots
 - USB to serial converter
 - Stand-alone EVR
- EPICS port (RTEMS is already running...)
- Helsinki University is going to use cRIO-EVR for a small carbon isotope accelerator
- Simplified EVG port for cRIO

cPCI-EVRTG-300

- 6U form factor CompactPCI
- Based on Virtex 5 FXT
- Eight Outputs:
 - GTX transceiver outputs
 - 40 x event clock resolution
 - Pulse/pattern outputs
 - Frequency generation
 - Two SFPs to drive GUN-RC
 - Two LVPECL outputs
 - Two Universal I/O slots
 - four outputs of choice
 - GUN-TX inhibit input
 - Low jitter (slightly better than VME-EVR-230RF)
 - Delay fine tuning down to ~10 ps steps

cPCI-EVRTG-300 related development

- New GUN-RC-300 to be designed
- Requirements:
 - One channel
 - Arbitrary pulse patterns with
 - Min. 1 ns pulses
 - Pulse to pulse spacing 2 ns increments
 - Output level 0 to 3.3V
- New modulation scheme
 - 200 ps resolution with GTX
 - > 5 gbps transceivers
 - Modulation decoding and output stage challenging

cPCI-EVG-300 and cPCI-EVR-300

- 6U form factor CompactPCI
- Based on Lattice ECP3
- Six Universal I/O slots
- Redesign of cPCI-EVG-230 and cPCI-EVR-230 with same functionality and different form factor
- Target: similar jitter performance as cPCI-EVx-230

cPCI-EVG-300 and cPCI-EVR-300 further development

- Upgrade to CompactPCI Express
 - Hardware is designed to be able to test this with mounting cPCI Express connector
- 3U version?

Future Development (wishlist)

- Address all customer requests (firmware issues)
- AMC form factor EVR
 - PICMG/xTCA for Physics
- Timing drift compensation
 - Feasible with current HW
- PCIe form factor EVR?
- Evaluation of new clock cleaners (Silicon Labs, Si5317)
- Data transfer network?

Future Development (cont.)

- New version (upgrade) of VME-ADC (e.g. for bunch pattern monitoring)
 - Upgrade FPGAs Virtex II Pro to Lattice ECP3?
 - Upgrade ADC? E2V AT84ADC001 (used to be Atmel) to ?

Modular Register Map

- Modular register map firmware based on one set of source VHDL code
- EVG Versions now available for
 - VME-EVG-230
 - cPCI-EVG-230 (and -220)
 - cPCI-EVG-300
 - (cRIO-EVG)
- EVR Versions now available for
 - VME-EVR-230 & VME-EVR-230RF
 - PMC-EVR-230
 - cPCI-EVR-230 (and -220)
 - cPCI-EVRTG-300
 - cPCI-EVR-300
 - cRIO-EVR

What's new in Modular Register Map

- SFP transceiver diagnostics
 - RX power, TX power
 - Temperature
- Configuration ROM/RAM
 - Contents not yet specified
- EVG Interrupts
 - Sequencer start/stop interrupts
 - External interrutps
- Pattern CML/GTX outputs
 - Max. 20 x 2048 bit pattern (CML VME-EVR-230RF)
 - Max. 40 x 2048 bit pattern (GTX cPCI-EVRTG-300)
- Frequency outputs (CML/GTX)
 - Define output high/low time in 1/20 (1/40 for GTX) event clocks
 - e.g. Australian Synchrotron booster revolution clock with 217 buckets